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The objective of our present study is to develop novel inhibitors for MMP-2 for acute
cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives
were synthesized based on imidazole and thiazole scaffoldsand then tested in a
screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of
imidazole and thiazole carboxylic acid-based compounds are superior in ef�cacy in
comparison to the conventional hydroxamic acid derivatives of the same molecules.
Based on these results, a 568-membered focused library of imidazole and thiazole
compounds was generated in silico and then the library members were docked
to the 3D model of MMP-2 followed by an in vitro medium throughput screening
(MTS) based on a �uorescent assay employing MMP-2 catalyticdomain. Altogether
45 compounds showed a docking score of > 70, from which 30 compounds were
successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography,
7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected
to simulated I/R injury. Six compounds showed signi�cant cardio-cytoprotecion and the
most effective compound (MMPI-1154) signi�cantly decreased infarct size when applied
at 1 mM in anex vivomodel for acute myocardial infarction. This is the �rst demonstration
that imidazole and thiazole carboxylic acid-based compounds are more ef�cacious
MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel
cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the
treatment of acute myocardial infarction.

Keywords: matrix metalloproteinase, MMP-2 inhibitor, heart , ischemia/reperfusion injury, cardioprotection, lead
candidate
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INTRODUCTION

Coronary heart disease (CHD) is the number one cause of
death globally (Alwan et al., 2010). Recent data show that
almost 18 million people died from CVDs in 2015, of which
an estimated 7.4 million were due to coronary heart disease
(Roth et al., 2017; WHO, 2017). The discovery of endogenous
cardioprotective mechanisms (Ischemic pre-, post-, and remote
pre- and perconditioning) has allowed for the exploration
of several molecular processes of cell injury and survival
mechanisms during ischemia/reperfusion (I/R) (Ferdinandy
et al., 2014). However, in spite of numerous promising
preclinical attempts aiming pharmacological triggering these
cardioprotective mechanisms, the dilemma of translation of
the results into clinical practice has remained unsolved
due to the presence of several additional factors including
cardiovascular co-morbidities (e.g., hyperlipidemia or diabetes
mellitus) (Ferdinandy et al., 2014). Thus, to improve clinical
outcomes, novel therapeutic strategies against myocardialI/R
injury are needed, which may preserve their protection even in
the presence of cardiovascular co-morbidities (Hausenloy et al.,
2017).

Matrix metalloproteinases (MMP) are zinc containing
peptidases classi�ed into several subtypes. The gelatinase-type
MMP-2 occurs in the heart in physiological conditions and
is synthesized by cardiomyocytes, �broblasts, and endothelial
cells (DeCoux et al., 2014). During I/R, MMP-2 is activated and
released from the injured myocardium (Cheung et al., 2000),
which may contribute to the degradation of contractile proteins
(Wang et al., 2002; Sawicki et al., 2005; Sung et al., 2007; Ali
et al., 2010), thereby leading to myocardial dysfunction, and in
the long run, to heart failure. Furthermore, in patients withST-
elevation myocardial infarction (STEMI), a signi�cant positive
correlation has been shown between the circulating levels of
MMP-2 measured before and 12 h after recanalization therapy,
and infarct size as determined by cardiac MR (D'Annunzio
et al., 2009). We have demonstrated that MMP-2 can be a
promising biomarker for patients with coronary artery disease
(Bencsik et al., 2015). We have previously also reported
that pharmacological inhibition of MMP-2 in rats evoked
cardioprotection that is equivalent to ischemic preconditioning
(Giricz et al., 2006; Bencsik et al., 2010). Our work has also shown
that although hyperlipidemia abolished the bene�cial e�ect of
ischemic preconditioning, cardioprotection in the presence of
hyperlipidemia was preserved during pharmacological inhibition
of MMP-2 (Giricz et al., 2006). We can thus conclude that MMP-
2 inhibition is a promosing drug target since it works in the
presence of a signi�cant cardiovascular co-morbidity, namely
hyperlipidemia (see for reviewsAndreadou et al., 2017).

To date, several MMP inhibitors have been identi�ed,
including hydroxamates, thiols, carbamoylphosphonates,
hydroxyureas, hydrazines,b-lactam, squaric acids, and
nitrogenous ligands (Durrant et al., 2011). Most of these
consist of a metal-coordinating function, called a zinc-binding
group (ZBG), which binds to the catalytic zinc ion of the
MMPs. Despite the promising features of these potent MMP
inhibitor compounds, only one compound has been approved

for clinical use by the U.S. Food and Drug Administration
Authority, which is PeriostatR
 (doxycycline hyclate), for the
treatment of periodontitis (Dormán et al., 2010). In spite of
much preclinical evidence about the involvement of MMP-2
in acute myocardial infarction (AMI), surprisingly, only one
failed clinical trial was conducted by the administration of a
non-selective, hydroxamate type MMP inhibitor, PG-116800, in
a relatively high dose (400 mg/day) for 90 days for AMI patients
(Hudson et al., 2006).

Consequent research has been focused on the design of
selective compounds that can distinguish between di�erent
members of the MMP family, thereby exploiting zinc-
binding groups other than the hydroxamate group (Fisher
and Mobashery, 2006). In addition, we have recently shown that
there is no need for complete inhibition of MMP-2 to achieve
cardioprotection since a moderate (� 20–25%) inhibition of
MMP-2 activity was su�cient to reduce infarct size in normo-
and hyperlipidemic isolated rat hearts (Giricz et al., 2006) and
also in anin vivorat model of AMI (Bencsik et al., 2014).

Consequently, our aims were to develop novel MMP-2
inhibitors with potent anti-ischemic e�cacy and moderate
MMP-2 selectivity among the MMP-subtypes. Preclinical studies
with MMPI's revealed a severe adverse side-e�ect frequently,
referred to as musculoskeletal syndrome. This is primarily due
to MMP-1 inhibition (which is considered an anti-target within
the MMPs). Selectivity against MMP-1 may be important to avoid
such side e�ects of MMP inhibitors (Papp et al., 2007).

The signi�cant di�erences in the structural features of the sub-
pockets of the binding/active sites allow for easy di�erentiation
and selectivity of the MMP inhibitors. S1' and S2' pockets are
responsible for the selectivity of the inhibitors and this can be
taken into consideration in the design of selective inhibitors to
tailor the occupation of the particular sub-pockets (Figure 1).
In the case of MMP-2, the S1' pocket is mainly hydrophobic
and relatively large, while in MMP-1 it is short and shallow.
Increasing bulkiness at the S1' pocket could change the activity
pro�le and allows for some selectivity over MMP-1. This trend
was clearly observed in the case of substituted thiazepine MMP
inhibitors (Almstead et al., 1999; Papp et al., 2007).

Therefore, we have designed a screening cascade to select
potent MMP-2 inhibitors with cardioprotective e�ects.

MATERIALS AND METHODS

Experimental Design-Screening Cascade
Our group applied a complex screening cascade to identify
candidates that may reduce acute cardiac I/R injury via
inhibition of MMP-2. During our complex screening protocol,
virtual screening was combined with docking calculations
followed by medium-throughput screening using MMP-2
catalytic domain. In the next stage, the inhibitory e�ect
was con�rmed on full length MMP-2 enzyme isolated
from cardiac tissue. Finally, the cardioprotective e�ects
of selected molecules were tested in neonatal cardiac
myocytes that were subjected to simulated ischemia and
reoxygenation as well as on an isolated rat heart model of AMI
(Figure 2).
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FIGURE 1 | Selected MMP-2 inhibitors and their subpocket occupation leading to selectivity against MMP-1 (Corresponding IC50 values are shown).

FIGURE 2 | The screening cascade. Complex screening cascade to identify candidates that may reduce acute cardiac I/R injury via inhibition of MMP-2. (A) AMRI
Chemical Library contains� 200,000 drug-like small molecules (< 500 Da) as compound set. We intended to select zinc-binding motif holding molecules, similar to
hydroxamic acids.(B) For 2D substructure and similarity search.(C) Selection of free acids from the AMRI's compound's collection. (D) Further focus to compounds
holding various motifs around a central core, re�ecting the typical MMP inhibitor architecture.(E) Selected acids screened in a �uorescent assay using a recombinant
human MMP-2 catalytic fragment and a synthetic peptide substrate. (F) The synthesis of the thiazole and the isosteric imidazole carboxylic acids. (G) The hydroxamic
acid pairs of the previously measured acids were tested.(H) The novel thiazole carboxylic acid chemotype was the starting point for further structure-based
optimization. A 568-membered focused library wasin silicogenerated around the AMRI library hits including their bioisosters and some simpli�ed analog.(I) Docking
studies: Genetic Optimization for Ligand Docking (GOLD) was used to build a 3D model based on the X-ray structure of humanMMP-2 and MMP-9. (J) Thirty
compounds were successfully synthesized for screening combining the in silicohits and the additional designed compounds.(K) In vitroMMP-2 activity was
measured using a �uorometric assay.(L) Low throughput screening by gelatin zymography technique.(M) Cell viability experiments in isolated neonatal cadiac
myocytes subjected to simulated ischemia/reperfusion injury. (N) Myocardial infarct size was measured afterex vivoglobal ischemia experiments on isolated rat hearts.

Chemistry—MMP-2 Inhibitor Design
Design of Selective MMP-2 Inhibitors
We applied contemporary library design approaches
based on the structural features of the known MMP-
2 inhibitors (Figure 2). Our approach started from
a diverse 200k compound library and the multi-step
selection procedure consisted of a substructure search

for binding motifs of MMP-2 inhibitors and diversity
selection.

In Silico Chemisty Approach
Chemical library
The Albany Molecular Research Inc. (AMRI; Albany, NY)
Library contains � 200,000 drug-like small molecules (< 500

Frontiers in Pharmacology | www.frontiersin.org 3 April 2018 | Volume 9 | Article 296

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Bencsik et al. Cardioprotection by MMP Inhibition

Mwt) synthesized by solution phase parallel synthesis. The
compound set contained� 300 medicinal chemistry relevant
chemotypes with diverse substitution patterns. The library
was succesfully involved in many exclusive drug discovery
projects.

2D chemoinformatics methods
According to the Similar Property Principle (Johnson and
Maggiora, 1990), molecules that are structurally similar are likely
to have similar properties. Applying simple 2D �ngerprints
is often the method of choice, particularly when numerous
reference compounds and multimillion compound databases
are available not only “because of its computational e�ciency
but also because of its demonstrated e�ectiveness in many
comparative studies” (Willett, 2006; Baig et al., 2016). Most
frequently the Tanimoto coe�cient (Willett and Winterman,
1986) is used for measuring similarity, in spite of its marked
size-dependency.

In practice, determining the similarity between known
reference structures and each molecule in a database, followed
by ranking the database molecules according to the similarities
would lead to a potentially active compound set forin vitro
screening. Similarly, reoccurring (privileged) structural motifs
could also be identi�ed and the compounds holding the motifs
could represent another screening library.

For 2D substructure and similarity search, we applied
standard chemical �ngerprints as implemented into
InstantJChem software (ChemAxon Ltd. Budapest) in which
binary strings encode the presence or absence of substructures.

The physico-chemical parameters [Mwt, clogP, H-bond
donors/acceptors,—Lipinski's Rule-5 (Lipinski et al., 2001);
rotatable bonds, and topological polar surface area] were
calculated by the calculation suit of InstantJChem (ChemAxon
Ltd. Budapest).

3D alignment methods
Novel 3D approaches consider not only the molecular topology,
but also deal with 3D coordinates of both the active and
the potential lead molecules for the similarity comparison and
estimate 3D shape similarity (Kalászi et al., 2014).

A rough estimation of the binding behavior of the compounds
is to assess their conformational �exibility and the overall
statistical representation of such conformational properties
would be presented as a 3D structure (ChemAxon Screen3D
software) (ChemAxon, 2013).

In �exible alignment, the conformations are created “on-the-
�y” during the alignment procedure. Flexible alignment methods,
such as used in the present study, have the advantage of not
requiring a pre-de�ned set of initial conformers to sample the
conformational space of the molecules. During the alignment
procedure we took speci�c atom-type information such as
pharmacophore sites into account. This information would be
capable of generating alignments where patterns (With similar
binding character) are oriented in a similar fashion as occurs
during the real binding to the active site. Therefore, it provides
a more realistic picture of the potential bioactive similarity of the
molecules.

3D modeling approaches
For docking studies, Genetic Optimization for Ligand Docking
(GOLD; version 4.0.1;Jones et al., 1997) was used to build a 3D
molecule model based on the X-ray structure of human MMP-
2. 1CK7 was the only full length 3D structure found in protein
databases but it contained a mutation (E404A). On the other
hand, the availability of the 3D structure of the collagenase-like
1-2 catalytic domain is su�cient for virtual screening targeting
MMP-2 inhibition, thus 1HOV (NMR), and 1QIB (X-Ray)
structures provided feasible alternatives.

Another option was 1EAK (X-Ray), which contains the
collagenase-like 1-2 domain together with connecting collagen
binding region (propeptides). Comparing the models 1EAK was
found to be the particularly reliable for virtual screening even
though it also contains the E404A mutation (Supplementary
Figure 1). The propeptide regions could be removed without
a�ecting the docking realiability.

The 3D structure of small molecules to be screened were
optimized and protonated before docking. The pH was set as 7.2.
For docking the standard Gold parameters were used as described
in the actual User Guide (Centre, 2017).

The MMP-2 active site was de�ned containing all the atoms
around a sphere with 19 Å radius. We have chosen Zn-ion
coordination as octahedral. For all the small molecules 10
independent runs were conducted.

The 1EAK model was validated with three known MMP-2
inhibitors: SC-74020 (Supplementary Figure 2), PD 166793
(Figure 1), and ABT-518 (Figure 1).

Synthetic Methods
The hydroxamic acids (e.g., AMRI-101H, AMRI-102H, and
AMRI-103H) were prepared from the corresponding acids using
bromo-tris-pyrrolidino phosphoniumhexa�uorophosphate
(PyBrOP) and polymer supported hydroxybenzotriazole as
activating agent before adding hydroxylamine hydrochloride
and a base (see Supplementary Figure 3). The isolated yields were
between 10 and 76%, while the purity was higher than 85%.

The synthesis of the thiazole and the isosteric imidazole
carboxylic acids were carried out according to standard
procedures and as described elsewhere (Ferdinandy et al., 2010).

In order to increase the solubility of the compounds, the
benzene ring was replaced with pyridine in various analogs
(MMPI-1248, MMPI-1260). Unfortunately, combination of
the pyridine ring with the imidazolyl core was synthetically
unsuccessful.

In Vitro Pharmacological Testing by MTS
Screening
In vitro MMP-2 activity was then measured, using a �uorometric
assay in a 384 well format. Human MMP-2 catalytic domain
(residues 110-221, 397-455) (Feng et al., 2000) was expressed
in E. coliin form of inclusion bodies. The protein was refolded
and then puri�ed by means of Ni-NTA a�nity and anion
exchange chromatography. Inhibition assays were carried out
in 50 mM Tris, 5 mM CaCl2, 300 mM NaCl, 20mM ZnSO4,
pH D 7.5 bu�er. For inhibition studies the catalytic domain
of the enzyme was pre-incubated with varying amount of
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inhibitor for 30 min. Then MMP substrate (Mca-Pro-Leu-
Gly-Leu-Dpa-Ala-Arg-NH2) (Papp et al., 2007) was added
at 3mM �nal concentration. After 1 h incubation at 37� C
the �uorescence was detected using a Wallac 1420 Victor2
microplate reader at 320 nm/405 nm Ex/Em wavelength. As
an alternative substrate we also used 5-FAM-Pro-Leu-Gly-Leu-
Dap(QXLTM 520)-Ala-Arg-NH2, where the �uorescence was
detected at 485 nm/520 nm. For each inhibitor candidate,
the percentage of inhibition was determined in duplicate
experiments at six inhibitor concentrations, chosen to observe
a 5–95% range of inhibition. For validation of the �uorometric
assay, Ilomastat [N-[(2R)-2-(Hydroxamidocarbonylmethyl)-4-
methylpentanoyl]-L-tryptophan Methylamide, (GM6001)], a
non-selective MMP inhibitor, was used as a positive control
inhibitor. The measured IC50 values varied between 0.3-1.0nM
which is in line with previous literature data (Galardy et al., 1994;
Yamamoto et al., 1998).

Gelatin Zymography Assay to Screen the
Ef�cacy of MMP-Inhibitiors
Gelatin zymography was performed as described previously
(Kupai et al., 2010; Bencsik et al., 2017). MMP-2 was isolated
from rat heart homogenates as follows: 50mg protein/lane were
loaded and separated by electrophoresis under non-reducing
conditions on an 8% SDS-polyacrylamide gels copolymerized
with 2 mg/ml gelatin from porcine skin (Sigma-Aldrich; St. Louis,
MO). After electrophoresis, gels were washed in 2.5% Triton-
X 100 with gentle agitation and then incubated for 20 h at
37� C in zymography development bu�er (50 mM Tris-HCl, pH
7.5, containing 5 mM CaCl2, 200 mM NaCl) in the presence or
abscence of the MMP inhibitor compounds. Zymographic gels
were stained in a 0.05% Coomassie Brilliant Blue R-250 solution
followed by destaining, and then zymograms were scanned.
MMP activity was detected as a colorless transparent zone on a
blue background and the clear bands in the gel were quanti�ed
by densitometry using the Quantity One software (Bio-Rad,
Hercules, CA). The obtained density values were measured and
percentage of inhibition values were then calculated.

Cytoprotective Effect of MMP Inhibitor
Compounds in Neonatal Rat Cardiac
Myocytes Subjected to Simulated
Ischemia/Reperfusion (SI/R)
Simulated Ischemia/Reperfusion Injury Under
Hypoxic Cinditions
For our cell viability experiments, 3 day-old cardiomyocytes
plated onto 24-well plates were tested under normoxic condition
or subjected to simulated ischemia (SI). The normoxic
cardiomyocytes were kept under normoxic conditions, i.e.,
the growth medium was changed to a normoxic solution (in
mM: NaCl 125, KCl 5.4, NaH2PO4 1.2, MgCl2 0.5, HEPES
20, glucose 15, taurine 5, CaCl2 1, creatine 2.5, BSA 0.1%, pH
7.4, 310 mOsm/l) (Li et al., 2004) and the cells were incubated
under 95% air and 5% CO2 at 37� C for 2.5 h. In the second
series of experiments, cardiac myocytes were subjected to SI
by incubating the cells in hypoxic solution (in mM: NaCl 119,

KCl 5.4, MgSO4 1.3, NaH2PO4 1.2, HEPES 5, MgCl2 0.5, CaCl2
0.9, Na-lactate 20, BSA 0.1%, 310 mOsm/l, pHD 6.4) (Li et al.,
2004) and placing the plates in a humidi�ed 37� C hypoxic
chamber exposed to a constant �ow of a mixture of 95% N2 and
5% CO2 for 4 h. The cells were then subjected to the following
treatments during SI or normoxic protocol: vehicle control or
MMP inhibitors at di�erent doses calculated according to IC
dosesin vitro. Normoxic and SI treatments were followed by
2 h reoxygenation with growth medium with administration
of the same dose of compounds as during normoxia or SI and
superfusion with 95% air and 5% CO2 at 37� C (Figure 3).

Cell Viability Assay
Cell viability was assessed by a calcein and propidium iodine
assay performed in each group after 2 h reoxygenation. Brie�y,
the growth medium was removed, the cells were then washed
with PBS twice and afterwards were incubated with calcein
(1mM) for 30 min. Then the calcein solution was replaced
with fresh PBS and the �uorescence intensity of each well was
detected by a �uorescent plate reader (FluoStar Optima, BMG
Labtech, Ortenberg, Germany). Fluorescent intensity was then
measured in well scanning mode (scan matrix:10� 10; scan
diameter: 10 mm; bottom optic; no of �ashes/scan point: 3;
temp: 37� C; excitation wavelength: 490 nm; emission wavelength:
520 nm). Then the PBS was removed and the cells were incubated
with PI (50mM) and a digitonin (10� 4 M) (Sigma-Aldrich;
St. Louis, MO) for 7 min. Following that, the PI solution was
replaced with fresh PBS and �uorescent intensity was detected
using the same settings, excitation wavelength: 544 nm; emission
wavelength: 610 nm). Background �uorescent intensity (Cells
without staining) was subtracted from the calcein �uorescence
intensity (re�ecting live cell population) and divided by PI

FIGURE 3 | Experimental protocol for cell culture studies and for theex vivo
rat heart model of AMI.(A) Isolated neonatal rat cardiac myocytes were
subjected to 4 h of simulated ischemia followed by 2 h of simulated
reperfusion. At the end of the reperfusion, cell viability was determined by
using calcein �urescence.(B) Isolated adult rat hearts were perfused
according to Langendorff and a 30-min global, no-�ow ischemia was applied
after a 20 min equilibration period. Subsequently, 2 h reperfusion was applied
and then infarct size was determined. The hearts were perfused with
Krebs-Henseleit solution containing lead candidates or vehicle from 20 min
prior to the global ischemia until the 60th min of reperfusion.
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�uorescence intensity (re�ecting total cell count) and theaverage
intensity of each group was plotted. The cytoprotective e�ect
of di�erent compounds was compared to simulated ischemic
control groups.

Myocardial Infarction in Isolated Rat Heart
Ex Vivo Global Ischemia/Reperfusion Injury
Our experiment conforms to the National Institutes of Health
Guide for the Care and Use of Laboratory Animals (NIH Pub.
No. 85-23, Revised 1996) and also to the EU directive guideline
for the care and use of laboratory animals published by the
European Union (2010/63/EU) and was approved by the local
ethics committee of the University of Szeged. Eight to ten
week-old male Wistar rats weighing 300–350 g (Toxicoop Ltd.,
Budapest, Hungary) were anesthetized intraperitoneally with
60 mg/kg pentobarbital sodium (Euthasol, Produlab Pharma,
Raamsdonksveer, The Netherlands). After administration of 500
U/kg heparin through the femoral vein, the heart was isolated
and perfused according to Langendor� with oxygenated Krebs-
Henseleit bu�er at 37� C as previously described (Turan et al.,
2006). Brie�y, hearts were subjected to 10 min aerobic perfusion
for equilibration and stabilization of heart function and then
by 30-min global ischemia followed by 120 min reperfusion.
Global ischemia was induced by setting a stopcock (B/Braun,
Melsungen, Germany) in closed position, and reperfusion was
achieved by turning the stopcock in the original (perfusion)
position. Heart rate and coronary �ow were monitored
throughout the perfusion protocol. All the test compounds,
their vehicle (DMSO,< 0.1% in Krebs-Henseleit solution) as
well as the positive control PD166793 (Tocris Bioscience, Cat.
No. 2520; Bristol, UK) were applied 20 min before the onset of
global ischemia and maintained until the 30th min of reperfusion
(Figure 3).

Determination of Myocardial Infarct Size
At the end of the 2-h reperfusion, the right ventricle was
removed, hearts were frozen, cut into six 1-mm-thick slices, and
incubated in 1% triphenyl-tetrazolium chloride (Sigma-Aldrich;
St. Louis, MO) at 37� C to delineate infarcted tissue. Slices were
then �xed and quanti�ed by planimetry using InfarctsizeTM 2.5
software (Pharmahungary, Szeged, Hungary) (Fekete et al., 2013).
Infarct size was expressed as a percentage of the left ventricle.

Statistical Analysis
Data were expressed as mean� SEM. Cell viability were
expressed as % of vehicle treated groups. Data were compared
to vehicle using ANOVA followed bypost-hoctests, e.g., Tukey
or Fisher LSD test.

RESULTS

Focused Library Design and MTS
Screening
Since hydroxamic acids are reported as the primary zinc-
binding motif, we intended to select such a library from the
AMRI 200,000 member non-exclusive compound repository as
a starting point of our drug discovery e�orts. Since only a
few compounds were available in the repository as hydroxamic

acids and the conversion of acids to hydroxamic acids were not
applicable to HT parallel synthesis, we decided �rst to select
free acids from the AMRI's compound collection. This selection
supported our initial hypothesis since acids are considered as
weaker Zn2C chelators than hydroxamic acids, which might
be bene�cial for achieving selectivity and in addition couldbe
considered as a good indicator of the MMP-2 inhibitory activity.
The substructure search resulted in 3600 acids, which were
further focused to a small diverse subset by chemoinformatics
methods including 259 compounds, where the compounds hold
various motifs around a central core, re�ecting the typical
MMP inhibitor architecture described above (seeFigure 2). The
selected acids were screened in a �uorescent assay using a
recombinant human MMP-2 catalytic fragment and a synthetic
peptide substrate. Ilomastat (a non-selective MMP inhibitor) was
used for the validation of the assay and in each subsequent
experiment as a control compound. The selected compounds
(259) were �rst tested using single point measurements at
10mM concentration; 6 compounds showed> 70% inhibition,
7 compounds between 60–70%, and 12 compounds between
50–60%. The accumulated hit-rate was 10%. The primary acid
hits (12) were attempted to convert to hydroxamic acids.
Since two reactions failed 10 hydroxamic acids were prepared
successfully for comparative MMP-2 screening. The hydroxamic
acid pairs of the previously measured acids were then tested.
Comparing the inhibitory activity of the acids and hydroxamic
acids, we had an unexpected discovery. Five acids showed higher
inhibition than the corresponding hydroxamic acids during
catalytic fragment measurement, and among them 3 belonged to
the same chemotype: thiazolyl-carboxylic acid (Table 1).

Furthermore, we found that the thiazole ring (MMPI-1157)
to the isosteric imidazole (MMPI-1154) increased the selectivity
to 1.5-fold over MMP-1 (Table 2) while the overall inhibitory
pro�le was similar. The 3D similarity score was also high (3D-
T D 0.85). The thiazole-imidazole replacement also made the
compounds less lipophilic (cLogP was reduced from 3.3 to
2.9). Interestingly, 4- (or para)-�uoro-phenyl substitution in the
shorter side chain (MMPI-1157, 1154, 1260, 1248) is favored over
the 3- (or meta)-�uoro-phenyl substitution. It showed higher
selectivity and MMP-2 inhibitory e�ect even if the 3D similarity
scores were high. The 4- benzyl-phenyl ether or 4-pyridyl-phenyl
ether side chain was also favored over the other groups in the
longer side chain. On the other hand, if the benzene ring was
replaced with pyridine in the shorter side chain, it reduced the
MMP-9 inhibition signi�cantly, thus MMP-2/9 selectivity was
increased (MMP 9 inhibition: MMPI-1252, 1253� 500mM).
One compound (MMPI-1140) that lacks the heterocyclic ring but
contains the corresponding side chains showed similar activity
pro�le as the parent thiazole carboxylic acid, MMPI-1133, even
though the 3D similarity alignment was relatively low (0.56).
In summary, the entire screening cascade (Figure 2) including
library design, selection, virtual screening, andin vitro biological
screening resulted in a novel thiazole/imidazole carboxylic acid
chemotypes, which could be suitable starting points for further
structure-based optimization.

As a next step we started to explore the chemical space around
this chemotype using 2D/3D structure-basedin silicomethods.
First, a 568-membered focused library wasin silico generated
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TABLE 1 | Comparing the inhibitory activity of the acids and hydroxamic acids.

Structure Type Code IC 50 on
MMP-2 ( mM)

Structure Type Code IC 50 on
MMP-2 ( mM)

N

S
O

N

F

O

NH

OH

hydroxamic
acid

AMRI-101H 12

N

S
O

N

F

OH

O

carboxylic acid AMRI-101A/
MMPI-1157

3.4

N

S

F

F
F

N
N
H

O

Cl

OH

hydroxamic
acid

AMRI-102H 11

N

S

F

F
F

N
OH

O

Cl

carboxylic acid AMRI-102A 6.2

S

NN
O

N
F

OH

hydroxamic
acid

AMRI-103H 17.6

S

NN
O

OH
F

carboxylic acid AMRI-103A 7.6

around the AMRI library hits including their bioisosters and
some simpli�ed analogs and then the library members were
docked to the 3D model of MMP-2.

Virtual 3D docking of potential MMP inhibitors was executed
using GOLD. The protein structure coordinates were obtained
from Protein Data Bank using the highest available resolution
(preferably co-crystallized with ligand). We used (MMP-2:
1QIB), (Dhanaraj et al., 1999). The region of interest used for
GOLD docking was de�ned as all the protein residues within
the 19 Å radius sphere with the midpoint of the Zinc ion
in the catalytic center. GOLD default parameters were used,
which were set to 200,000. The complexes were submitted
to 20 genetic algorithm runs using the GOLDScore �tness
function.

As a result, 45 compounds were considered as virtual hits
(docking score> 70) and proposed for chemical synthesis. The
synthesizable compound set was completed with several close
analogs by rational design. For instance, in order to increase the
solubility of the compounds, the benzene ring was successively
replaced with pyridine (see MMPI-1252, 1253, 1248, and 1260).
Altogether 30 compounds were successfully synthesized for
screening combining thein silicohits and the additional designed
compounds.

The compounds were measured for MMP-1, 2, 9, 13 to
determine their inhibitory pro�le. E�ciency Index ampli�es the
two major required e�ects, selectivity against MMP-1 and the
inhibitory activity.

Table 2 shows the IC50 values of the hit compounds (hit
criteria: 100% MMP-2 inhibition at 100 microM). The Gold

docking scores are shown for those hits that are coming from
virtual screening.

In addition, 3D �exible alignment studies were performed
between the novel hit compounds and the initial AMRI library
best hit (AMRI-101A/MMPI-1157) compounds. The measure
of the alignment was characterized by 3D similarity scores (3D
Tanimoto coe�cient, ChemAxon Screen3D software). It was
postulated that high 3D similarity score could reveal similar
conformation and binding mode which could result in similar
bioactivities. Finally, cLogP was calculated for each compound.
The lower values showing less lipophilicity which is expected
to accelerate the passage through the cell membrane leading to
higher bioavailability.

MMPI-1154 was investigated more deeply in 3D docking
studies.Figure 4 shows the interaction of the compound to the
active site of MMP-2. In MMPI-1154 (Containing an imidazole-
carboxylic acid moiety), the acid residue had a chelating
interaction to the Zn2C with the contribution of one of the N-
hetero atoms of the heterocyclic ring. This relatively weakZn2C

chelation dynamically and statistically gives an allostericbinding
feature of this inhibitor.

The Effect of MMP Inhibitors on Cardiac
MMP-2 Activity Measured by Zymography
To con�rm the MTS screen results, we tested the potential MMP
inhibitor molecules on MMP-2 enzyme isolated from rat heart
in vitro. Therefore, we applied the MMPIs at 1 and 100mM �nal
concentration in the enzyme's development bu�er (Table 3).
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TABLE 2 | Results of thiazole carboxylic acid (TCA) and imidazole carboxylic acids (ICA) and related analogs.

Structure Code IC 50 on MMP-1
(mM)

IC50 on MMP-2
(mM)

IC50 on MMP-9
(mM)

IC50 on MMP-13
(mM)

3D alignment to
1157

cLogP

N S

F

N

O

HO

O MMPI-1157
(TCA)

3.6 3.4 15 1.6 1.00 3.33

NHN

F

N

O

O

HO
MMPI-1154
(ICA)

10 6.6 13 1.8 0.85 2.91

O

N

N S

F

O

HO
MMPI-1133
(TCA)

6.8 25 9,8 4.7 0.932 3.37

O

N

F

OHO
MMPI-1140 12 20 39 2.6 0.56 2.91

N S

N

O

HO

O
MMPI-1155
(TCA)

26 25 10 1.76 0.663 4.77

H
-
Cl

N NH

N

O

HO

O
MMPI-1247
(ICA)

33 15 100 3.3 0.843 3.11

NHN

F

N

O

O

HO MMPI-1245
(ICA)

16 35 8 0.28 0.673 4.70

N S

F

N

HO

O MMPI-1254
(TCA)

17 30 20 3 0.739 3.39

(Continued)
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TABLE 2 | Continued

Structure Code IC 50 on MMP-1
(mM)

IC50 on MMP-2
(mM)

IC50 on MMP-9
(mM)

IC50 on MMP-13
(mM)

3D alignment to
1157

cLogP

N

N S

N

O

HO

O MMPI-1253
(TCA)

240 90 > 500 8 0.927 2.22

N

N S

N

O

HO

O
MMPI-1252
(TCA)

115 54 > 500 1.5 0.948 2.20

N

N S

F

N

O

HO

O MMPI-1260
(TCA)

51 5.7 37 2.5 0.916 2.16

N

N S

F

N

O

HO

O MMPI-1248
(TCA)

47 8 8.8 1.24 0.962 2.24

Cardio-Cytoprotection by MMPIs in Cell
Culture Model of I/R Injury
Some doses of MMPIs a�ected cell viability signi�cantly in
normoxic conditions (Supplementary Figure 4). Since the
vehicle for MMPIs was DMSO, aerobic cardiac myocytes
were treated with 0.1% (v/v%) DMSO and their viability was
also assessed. Vehicle treatment did not a�ect cell viability
in comparison to non-treated cardiomyocytes (Supplementary
Figure 5).

Hypoxia is one of the numerous in�uences on cardiac
matrix remodeling, via ECM turnover and induction of MMPs.
In addition, I/R injury is also a critical modulator of MMP
expression through alternative mechanisms (Jun et al., 2011).

The 4-h hypoxic exposure and 2-h reoxygenation caused
a marked cell death (Supplementary Figure 5), which was
attenuated by MMPI treatment. To investigate whether MMPIs
treatment in�uences cardiac myocite survival after simulated
I/R, we selected 6 MMPIs that were available at that time and,
which showed signi�cant MMP inhibitory e�ect during pre-
screening. We tested those compounds in cultured neonatal
cardiac myocytes subjected to simulated I/R studies. Ilomastat
served as positive control (Supplementary Figure 6). The tested
compounds showed signi�cant cytoprotection, between 17 and
47% (Figure 5). The supplementary �gures show all inhibitor
testing data (Supplementary Figure 4).

Cardioprotection by MMPI-1154 in Isolated
Rat Heart Model of I/R Injury
Finally, based on the results of cell culture experiments,
we selected the most potent cardioprotective compound,
MMPI-1154 for testing in an isolated rat heart model of AMI.
MMPI-1154 reduced myocardial infarct size signi�canly at 1mM
as compared to the vehicle-treated group (Figure 6).

DISCUSSION

In our study, we have successfully demonstrated the development
of a novel, selective MMP-2 inhibitor for cardioprotection
from an in silico compound library selection, through to
the testing of the most promising compound against acute
myocardial infarction, in an isolated rat heart model. We've
found that the MMP-inhibiting e�ects of imidazole and
thiazole carboxylic acid-based compounds are superior to the
conventional hydroxamic acid type derivatives of the same
molecules. We have thus shown for the �rst time in the
literature that the acute application of MMPI-1154 (An imidazole
carboxylic acid-based compound) has a protective e�ect for
the heart against acute myocardial infarction. We achievedex
vivo cardioprotection via a moderate MMP-2 inhibition, since
MMPI-1154 was applied at around the concentration of its IC20
value.
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FIGURE 4 | Two different views of the 3D structure of MMP-1154 docked tothe active site of MMP-2 together with the major binding interactions.

MMP Inhibitor Development Strategy
Currently,� 500 papers investigating the role of MMP inhibition
in myocardial ischemia are available from the last 2 decadesin
PubMed database. There are several papers that describe the non-
zinc binding, allosteric (e.g.,p-p stacking) interactions of MMP-
2 with selected inhibitors (Di Pizio et al., 2013; Agamennone
et al., 2016; Ammazzalorso et al., 2016; Adhikari et al., 2018).
Most of these papers employ MMP-2 as a potential biomarker
for ischemic heart diseases or as a therapeutic target to evoke
cardioprotection. However, early clinical trials targeting MMP-
2 for improving cardiovascular outcomes after acute myocardial
infarction have failed (e.g., PREMIER study,Hudson et al., 2006).
The likely reason for failure was the lesser selectivity of the
applied MMP inhibitors as well as the chronic and relatively high-
dose administration regimen. Therefore, in our present study, we
aimed to develop novel MMP-2 inhibitor lead candidates, which
possess high selectivity and lead only to a moderate MMP-2

inhibition in accordance to our previous �ndings (Giricz et al.,
2006; Bencsik et al., 2014).

Novel Structural Findings Regarding
MMP-2 Inhibitor Development
Several hydroxamic acid compounds are known as non-
selective MMP inhibitors. Therefore, we started our inhibitor
development with selecting hydroxamic acid compounds
from the AMRI library. We also selected their carboxylic
acid derivatives. We identi�ed thiazole and imidazole
substituted carboxylic acid molecules, in which MMP-
2 inhibitory e�ect was superior to the corresponding
hydroxamic acid derivatives. Furthermore, we found that
changing the thiazole ring (MMPI-1157) to the isosteric
imidazole (MMPI-1154) increased the selectivity over MMP-
1, although the overall inhibitory pro�le and the structure
were similar. This feature was an advantageous factor
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during molecular designing process since MMP-1 inhibition
was responsible for the development of musculoskeletal
syndrome, the most severe adverse e�ect of early MMP
inhibitors.

The relatively weak Zn2C chelation derived from the
imidazole-carboxylic acid moiety interacting to the Zn2C

dynamically and statistically gave an allosteric binding feature
for MMPI-1154. It is also assumed that the additional electron
donating heteroatom being in close proximity to the acid moiety
(thiazole/imidazole ring) would also contribute to the chelation
of the Zn2C ion. The bulky side chain is deep inside in the S1'
pocket as expected, although some rotational movements would
be permitted around the central tertiary N atom. This option
would allow di�erent binding modes and activity pro�les as
well.

TABLE 3 | Screening of molecules on cardiac MMP-2 with gelatin zymography.

Code Inhibition (%) � SEM
at 100 mM �nal MMP inhibitor concentration

MMPI-1133 11.14 � 1.58

MMPI-1140 81.08 � 3.88

MMPI-1154 100

MMPI-1155 46.95 � 19.06

MMPI-1157 100

MMPI-1245 100

MMPI-1247 100

MMPI-1248 100

MMPI-1252 100

MMPI-1253 100

MMPI-1254 100

MMPI-1260 100

Most importantly, the pyridine moiety instead of the phenyl
ring at the end of the S1' pocket occupying longer side chain of
the molecules increased the selectivity of the inhibition for MMP-
2 against MMP-1 (MMPI-1260, 1248). This is most likely due to
the increased polarity of the tail group (such as pyridine), which is
exposed to the aqueous environment at the end of the S1' pocket.
Similar compounds are described inDuan et al. (2007), where
non-zinc chelating MMP-2 inhibitors with a similar bulky side
chain were reported. This �nding supported our hypothesis that
weak or negligible Zn2C chelation with bulky and partially polar
side chains lead to selective and active MMP-2 inhibitors. The
phenyl-pyridine exchange is also bene�cial to the cell penetration
since the calculated octanol-water partition (cLogP) decreased
in one order of magnitude. Although this change did not cause
signi�cant conformational changes, the 3D similarities were high
between these compounds and the initial hit (MMPI-1157).

In conclusion, the biological data and the docking studies
together with the 3D alignment modeling con�rmed that
these chemotypes represent a novel promising class of MMP-2
inhibitors. The bulky groups together with a weaker Zn2C-
chelating carboxylic acid residue allowed us to achieve low
micromolar MMP-2 inhibition, often together with an apparent
selectivity against MMP-1. Finally, all the hit compounds meet
the drug-likeness criteria (Lipinski Rule of 5.), which predicts
high developability prognosis.

Screening Cascade
After the chemical optimization of the novel MMP inhibitor
lead candidates, we determined their IC50 values by using gelatin
zymography. During zymographic analysis, we used full-length,
active MMP-2 enzymes isolated from healthy young adult rat
hearts. Subsequently, the cardio-cytoprotective e�ects of the
selected candidates having the lowest IC50 values to MMP-2
were tested in cultured neonatal cardiac myocytes subjected to

FIGURE 5 | Cardioprotective effects of MMPI lead candidates on neonatal rat cardiac myocytes subjected to simulated I/R. Cell viability was measured after 4 h
simulated ischemia followed by 2 h of simulated reperfusion. Data are expressed in the ratio of vehicle (DMSO) control inpercentage. Positive data (more than 100%)
shows higher viability compared to the control. *p < 0.05 vs. Vehicle,n D 5–6 (One-way ANOVA followed by Dunnettpost-hoc test). The most effective doses of the
series of experiments are presented in the case of all compounds (for more detailed results see for Supplementary materials, Figure 4).
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FIGURE 6 | MMPI-1154 is cardioprotective. The effect of MMPI-1154 on
myocardial infarct size in isolated rat hearts subjected to30 min global
ischemia followed by 120 min reperfusion. *p < 0.05 vs. Vehicle,n D 6–8
(One-way ANOVA followed by Fisher LSDpost-hoc test).

simulated I/R injury. Cardiac myocyte cell culture assay allowed
a relatively high throughput biological e�cacy testing (Gorbe
et al., 2010) of the selected lead candidates in several dose ranges
at di�erent levels of inhibition of MMP-2 activity. Our cell
culture test system revealed several biologically e�cacious doses
beyond the IC50 values of the selected lead candidates (see data
Supplementary Figure 1 for details).

Cardio-Cytoprotection by MMPI-1154
Based on the results of the abovementioned cell culture
experiments, we selected MMPI-1154 (The lead candidat) which
showed the highest increase in cell viability during simulated I/R
experiments. We then used it for cardioprotection in anex vivo
rat heart model of acute myocardial infarction. To approximate
the moderate 20% inhibition of MMP-2 activity by MMPI-1154
(based on our previous �ndings,Giricz et al., 2006; Bencsik
et al., 2014), in the ex vivomodel of AMI, we used the 1mM
concentration (IC20 value) instead of the most e�ective 2.5mM
(IC50 value) concentration seen during cell culture experiments.
Although MMPI-1154 is not highly selective to MMP-2, it seems
to be one of the most e�cient MMP-2 inhibitors as shown in
Table 2(e�ciency index). In the present study, thein silicoand
subsequentin vitro chemical e�ciency has been con�rmed in the
isolated heart experiments since MMPI-1154 in 1mM showed

a signi�cant cardioprotection e�ect by decreasing myocardial
infarct size during acute global ischemia/reperfusion injury.
Further research inin vivo models of AMI can shed light on its
cardioprotective properties as well as on its safety derived from
the optimal selectivity toward di�erent MMP isoforms.

CONCLUSIONS

This is the �rst demonstration that imidazole and thiazole
carboxylic acid-based compounds are more e�cacious than their
hydroxamic acid derivatives in MMP-2 inhibition. MMPI-1154
is a promising novel cardio-cytoprotective imidazole-carboxylic
acid MMP-2 inhibitor lead candidate for the treatment of acute
myocardial infarction.
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